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Global vs. partial models of complex systems

• Several complex systems do not admit global models capturing all their aspects
but partial models that describe individual sub-systems or specific aspects

• Examples: heart rate, intrusion detection in computer networks, water resources, 
satellites, …

• Possible solutions: (black-box) data-driven approaches or aggregating partial
models
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Aggregating partial models: Overview of the idea

• Partial models are embedded in intelligent
agents

• Agent = independent autonomous AI 
system

• An agent detects only some anomalies and 
returns an anomaly probability

• The problem is to design the interaction
mechanisms for aggregating anomaly
probabilities returned by the agents to 
obtain a global anomaly probability

• Examples of interaction mechanisms: 
average, max or min, cooperative 
negotiation, voting, …
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Examples

• Heart rate: agents relate heart rate to different physiological quantities
[Amigoni et al., Artif Intell Med, 2003] [Amigoni et al., IEEE T Inf Technol B, 2006]

• Intrusion detection systems in computer networks: agents capture anomalies on different
aspects
[Amigoni et al., Proc. IAT, 2008]

• Number of syn-flags (opening of new connections), number of reset-flags (aborted 
connections), most used ports, …

• Water resources systems: agents represent the views of different stakeholders
[Mason et al., Water Resour Res, 2018]
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Case study: Anomaly detection from data of the Cryosat-2 satellite

Flight-Control Team Multi-Agent System (FCTMAS) Study conducted by Politecnico di 
Milano, European Space Agency (ESA) - Advanced Mission Concepts and 
Technologies Office, and Telespazio Vega Deutschland GmbH
[Amigoni et al., Proc. IAS, 2018]
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The application context

«ESA’s CryoSat mission is dedicated to measuring the thickness of polar sea ice and 
monitoring changes in the ice sheets that blanket Greenland and Antarctica» 
[www.esa.int]

Cryosat-2 satellite

The flight control team receives a lot of data from the 
satellite and has to identify anomalous behaviors
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The anomaly detection problem

Events log file

Anomaly models for single variables (anomaly = deviation from nominal behavior) that
return anomaly probabilities

Aggregation of anomlay probabilities returned by anomaly models for single variables to 
detect system-level anomalies
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Anomaly models for single variables

Nominal models
Numerical values
 Neural networks
 Autoregressive Moving

Average (ARMA)
 …

Categorical values
 Markov chains
 …

Anomaly models
𝐷𝐷𝑖𝑖: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⟼ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Missing source packets

Commanding link status TC
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The aggregation problem

Given anomaly models for single variables 𝑫𝑫𝟏𝟏,𝑫𝑫𝟐𝟐, … ,𝑫𝑫𝑰𝑰 , find their best aggregation

Aggregation is a tree
 𝐷𝐷𝑖𝑖 are the leaves
 Aggregation functions 𝐴𝐴𝑗𝑗 are other nodes
 The root returns the system’s anomaly probability

The best aggregation tree maximizes the identification
of anomalies at the system level
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Aggregation functions (1)

Maximum aggregation functions
𝐴𝐴𝑗𝑗 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘𝑗𝑗 = max{𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘𝑗𝑗}

 All aggregation trees are equivalent

Average aggregation functions
𝐴𝐴𝑗𝑗 𝑝𝑝1, 𝑝𝑝2, … ,𝑝𝑝𝑘𝑘𝑗𝑗 =

𝑝𝑝1+𝑝𝑝2+⋯+𝑝𝑝𝑘𝑘𝑗𝑗
𝑘𝑘𝑗𝑗

 Equivalence classes of aggregation trees

𝑝𝑝1
4

+
𝑝𝑝2
4

+
𝑝𝑝3
4

+
𝑝𝑝4
12

+
𝑝𝑝5
12

+
𝑝𝑝6
12
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Aggregation functions (2)

Cooperative negotiation aggregation functions
 Iterative procedure to find agreements between children
 Proposals and counter-proposals [Amigoni and Gatti, JAAMAS, 2007]
 Equivalence classes of aggregation trees

Mediator

Agent 2Agent 1

p1 = 0.65 p2 = 0.79

p = 0.68

p = 0.72 p = 0.72p1 = 0.66 p2 = 0.73

p = (0.65 + 0.79) / 2 = 
0.72
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Solving algorithms (1)

Enumeration algorithm

Simulated annealing algorithm: local moves with decreasing probability of accepting a 
move that worsens the aggregation tree

initial tree
swap 𝐷𝐷𝑖𝑖 and 

𝐷𝐷𝑙𝑙 move 𝐷𝐷𝑖𝑖 insert 𝐴𝐴𝑗𝑗 remove 𝐴𝐴𝑗𝑗



13

Greedy algorithm: local moves that strictly improves the aggregation tree

 Does not cover the entire solution space

Solving algorithms (2)

initial tree add 𝐷𝐷𝑖𝑖 insert 𝐴𝐴𝑗𝑗
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Experimental evaluation

Implementation: each node of the aggregation tree is an independent software agent in 
JADE
Anomaly models of 5 variables built from data of Cryosat-2 collected in February 2013
Anomaly at the system level with probability > 0.2
Cost matrix

Test on data of Cryosat-2 collected in July and August 2013
Injection of anomalies at the system level

System ok System anomalous

Classified ok 0 50

Classified anomalous 10 0
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Experiment
Single variable anomaly System anomaly

Best solutions

𝐴𝐴𝑗𝑗: cooperative negotiation

cost = 0 cost = 100
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Experiment
Correlated variables

Optimal solutions with cost = 0

𝐴𝐴𝑗𝑗: cooperative negotiation

Blue: enumeration
Red: simulated annealing
Black: greedy
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Experiment
Subsets of correlated variables

Optimal solutions produce 2 false positives (cost = 20)

𝐴𝐴1: cooperative negotiation

Blue: enumeration
Red: simulated annealing
Black: greedy
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Experiment
Scalability

Enumeration algorithm

Simulated annealing and greedy algorithms are tunable by the user (e.g., number of 
iterations)

Number of anomaly models for single variables

* estimated
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Guidelines for applications

System anomalies related to single variables
 Use maximum aggregation functions

System anomalies related to correlated variables
 Use cooperative negotiation aggregation functions

System anomalies related to subsets of correlated variables
 Use combinations of aggregation functions

Simulated annealing is the most effective algorithm for building aggregation trees
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Conclusions

Aggregating partial models using mechanisms for intelligent agents’ interaction
could provide a solution for anomaly detection in complex systems

The approach is similar to some ensemble approaches, but it provides more structure
and better understanding of the systems (good for diagnosis)
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Thank you!
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