

Intelligent Agents for Detecting Anomalies in Complex Systems

Francesco Amigoni francesco.amigoni @polimi.it

Artificial Intelligence and Robotics Laboratory - Politecnico di Milano

Global vs. partial models of complex systems

- Several complex systems do not admit global models capturing all their aspects but partial models that describe individual sub-systems or specific aspects
- Examples: heart rate, intrusion detection in computer networks, water resources, satellites, ...

Possible solutions: (black-box) data-driven approaches or aggregating partial models

Aggregating partial models: Overview of the idea

- Partial models are embedded in intelligent agents
 - Agent = independent autonomous Al system
- An agent detects only some anomalies and returns an anomaly probability
- The problem is to design the interaction mechanisms for aggregating anomaly probabilities returned by the agents to obtain a global anomaly probability
- Examples of interaction mechanisms: average, max or min, cooperative negotiation, voting, ...

Examples

Heart rate: agents relate heart rate to different physiological quantities
 [Amigoni et al., Artif Intell Med, 2003] [Amigoni et al., IEEE T Inf Technol B, 2006]

$$QT = C_1 - C_2 \times \exp^{-\frac{C_2}{HR}} \qquad HR = \begin{cases} 65 & RR \le 15\\ 2, 8 \times RR + 25 & 15 < RR < 45\\ 150 & RR \ge 45 \end{cases}$$

- Intrusion detection systems in computer networks: agents capture anomalies on different aspects
 - [Amigoni et al., Proc. IAT, 2008]
 - Number of syn-flags (opening of new connections), number of reset-flags (aborted connections), most used ports, ...
- Water resources systems: agents represent the views of different stakeholders
 [Mason et al., Water Resour Res, 2018]

Case study: Anomaly detection from data of the Cryosat-2 satellite

Flight-Control Team Multi-Agent System (FCTMAS) Study conducted by Politecnico di Milano, European Space Agency (ESA) - Advanced Mission Concepts and Technologies Office, and Telespazio Vega Deutschland GmbH [Amigoni et al., Proc. IAS, 2018]

The application context

«ESA's CryoSat mission is dedicated to measuring the thickness of polar sea ice and monitoring changes in the ice sheets that blanket Greenland and Antarctica» [www.esa.int]

Cryosat-2 satellite

The flight control team receives a lot of data from the satellite and has to identify anomalous behaviors

The anomaly detection problem

Events log file

```
2013-08-03 07:08:13.553 20755 2
                                  BEHVLimCPB
                                               crymca Information Log
                                                                          2013.215.05.08.50.190 DHT30304 VAL: ON STATE: ON STATUS
  limit is back to nominal
                                                                           TC: SSC09000, APID: 812, SSC: 13900
2013-08-03 07:08:11.275 13524 1
                                  CMDHveri
                                               crymca Information Log
  set stage: EV\_APP\_ACCEPT status to: PASSED
2013-08-22 23:32:20.754 23001 1
                                               crvmca Error
                                                                    System
                                                                             4 Missing Source Packets, APID = 68, VCID = 0,
  SSC = 14894, Time = 2013-08-22T23:32:18.710216
2013-08-22 23:32:19.511 10307 1 NCDUadmi
                                                                             NCDU: TM007 Data gap on TM link VC 250/0,
                                               crymca Warning
                                                                    Log
  Mode: Onl-TIM from KR14 . Reason: unk, Size: 15
                                                                             Commanding link status set to: TC: NO RF, TM: GREEN
2013-08-22 23:32:19.448 13842 1
                                                                   Log
                                               crymca Information
                                                                             Unexpected spill-over data [fhp = 730]
2013-08-22 23:32:19.443 14778 1
                                               crvmca Error
                                                                    System
```

Anomaly models for single variables (anomaly = deviation from nominal behavior) that return anomaly probabilities

Aggregation of anomlay probabilities returned by anomaly models for single variables to detect system-level anomalies

Anomaly models for single variables

Nominal models

Numerical values

- Neural networks
- Autoregressive Moving Average (ARMA)
- **.** . . .

Categorical values

- Markov chains
- **.** . . .

Anomaly models

 D_i : state \mapsto anomaly probability

The aggregation problem

Given anomaly models for single variables $\{D_1, D_2, ..., D_I\}$, find their best aggregation

Aggregation is a tree

- $lacktriangledown D_i$ are the leaves
- **Aggregation functions** A_i are other nodes
- The root returns the system's anomaly probability

The best aggregation tree maximizes the identification of anomalies at the system level

Aggregation functions (1)

Maximum aggregation functions

$$A_j(p_1, p_2, ..., p_{k_j}) = \max\{p_1, p_2, ..., p_{k_j}\}$$

All aggregation trees are equivalent

Average aggregation functions

$$A_j(p_1, p_2, ..., p_{k_j}) = \frac{p_1 + p_2 + ... + p_{k_j}}{k_j}$$

Equivalence classes of aggregation trees

$$\frac{p_1}{4} + \frac{p_2}{4} + \frac{p_3}{4} + \frac{p_4}{12} + \frac{p_5}{12} + \frac{p_6}{12}$$

Aggregation functions (2)

Cooperative negotiation aggregation functions

- Iterative procedure to find agreements between children
- Proposals and counter-proposals [Amigoni and Gatti, JAAMAS, 2007]
- Equivalence classes of aggregation trees

Solving algorithms (1)

Enumeration algorithm

Simulated annealing algorithm: local moves with decreasing probability of accepting a move that worsens the aggregation tree

Solving algorithms (2)

Greedy algorithm: local moves that strictly improves the aggregation tree

Does not cover the entire solution space

Experimental evaluation

Implementation: each node of the aggregation tree is an independent software agent in JADE

Anomaly models of 5 variables built from data of Cryosat-2 collected in February 2013 Anomaly at the system level with probability > 0.2

Cost matrix

	System ok	System anomalous	
Classified ok	0	50	
Classified anomalous	10	0	

Test on data of Cryosat-2 collected in July and August 2013 Injection of anomalies at the system level

Experiment Single variable anomaly → System anomaly

#	D_1	D_2	D_3	D_4	D_5	A/N
01	0.5					A
02	0.5					A
03		0.3				A
04		0.4				A
05		0.7				A
06		0.5				A
07			0.3			A
08			0.8			A
09			0.9			A
10				0.7		A
11				0.7		A
12					0.8	A
13					0.4	A
14					0.4	A
15					0.3	A
16	0.4					A
17	0.8					A
18	0.5					A
19		0.5				A
20		0.5				A

Best solutions

 A_i : cooperative negotiation

Experiment Correlated variables

Optimal solutions with cost = 0

#	D_1	D_2	D_3	D_4	D_5	A/N
01				0.60		A
02		0.20				N
03	0.10	0.15	0.35			N
04	0.10	0.12	0.35			N
05	0.10	0.10	0.35	0.70		A
06			0.20			N
07				0.50		A
08			0.25			N
09	0.20					N
10	0.25	0.18				A
11			0.20			N
12				0.40		A
13			0.10	0.50		A
		0.10		0.60		A
15	0.10	0.08	0.25			N
	0.05		0.20			N
17	0.30	0.28	0.45			A
	0.35	0.30	0.55			A
19	0.25	0.10	0.35			A
20	0.10	0.12	0.25			N

 A_i : cooperative negotiation

Blue: enumeration

Red: simulated annealing

Black: greedy

Experiment Subsets of correlated variables

Optimal solutions produce 2 false positives (cost = 20)

#	D_1	D_2	D_3	D_4	D_5	A/N
01	0.15	0.20	0.25			N
02	0.10	0.15	0.20			N
03	0.25	0.28	0.32			N
04	0.30	0.32	0.35			A
05	0.25	0.35	0.40			A
06	0.35	0.40	0.50			A
07	0.45	0.55	0.60			A
	0.10					N
09	0.20	0.17	0.35			N
1	0.25	0.18	0.35			N
11				0.30	0.20	N
12				0.40	0.30	N
13				0.50	0.40	N
14				0.60	0.45	A
15				0.65	0.55	A
16				0.70	0.40	A
17				0.80	0.70	A
18	0.05	0.10	0.15	0.20	0.30	N
19	0.15	0.20	0.25	0.30	0.40	N
20	0.20	0.25	0.30	0.40	0.50	N

Blue: enumeration

Red: simulated annealing

Black: greedy

Experiment Scalability

Enumeration algorithm

Simulated annealing and greedy algorithms are tunable by the user (e.g., number of iterations)

Guidelines for applications

System anomalies related to single variables

→ Use maximum aggregation functions

System anomalies related to correlated variables

→ Use cooperative negotiation aggregation functions

System anomalies related to subsets of correlated variables

→ Use combinations of aggregation functions

Simulated annealing is the most effective algorithm for building aggregation trees

Conclusions

Aggregating partial models using mechanisms for intelligent agents' interaction could provide a solution for anomaly detection in complex systems

The approach is similar to some ensemble approaches, but it provides more structure and better understanding of the systems (good for diagnosis)

Thank you!