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Global vs. partial models of complex systems

» Several complex systems do not admit global models capturing all their aspects
but partial models that describe individual sub-systems or specific aspects

 Examples: heart rate, intrusion detection in computer networks, water resources,
satellites, ...

» Possible solutions: (black-box) data-driven approaches or aggregating partial
models
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Aggregating partial models: Overview of the idea

» Partial models are embedded in intelligent ™

agents

* Agent = independent autonomous Al
system

* An agent detects only some anomalies and
returns an anomaly probability

* The problem is to design the interaction
mechanisms for aggregating anomaly
probabilities returned by the agents to
obtain a global anomaly probability

« Examples of interaction mechanisms:
average, max or min, cooperative
negotiation, voting, ...
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Examples

* Heart rate: agents relate heart rate to different physiological quantities
[Amigoni et al., Artif Intell Med, 2003] [Amigoni et al., IEEE T Inf Technol B, 2006]

65 RR < 15
QT = €y — Cy x exp Tk HR={ 2,8 <xRR+25 15< RR < 45
150 RR > 45

* Intrusion detection systems in computer networks: agents capture anomalies on different
aspects
[Amigoni et al., Proc. IAT, 2008]

* Number of syn-flags (opening of new connections), number of reset-flags (aborted
connections), most used ports, ...

* Water resources systems: agents represent the views of different stakeholders
[Mason et al., Water Resour Res, 2018] BT H
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Case study: Anomaly detection from data of the Cryosat-2 satellite

Flight-Control Team Multi-Agent System (FCTMAS) Study conducted by Politecnico di
Milano, European Space Agency (ESA) - Advanced Mission Concepts and
Technologies Office, and Telespazio Vega Deutschland GmbH

[Amigoni et al., Proc. IAS, 2018]
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The application context

«ESA's CryoSat mission is dedicated to measuring the thickness of polar sea ice and
monitoring changes in the ice sheets that blanket Greenland and Antarctica»
[www.esa.int]

Cryosat-2 satellite

The flight control team receives a lot of data from the
satellite and has to identify anomalous behaviors
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The anomaly detection problem

Events log file

2013-08-03 07:08:13.5563 20755 2  BEHVLimCPE crymca Information Log 2013.215.05.08.50.190 DHT30304 VAL: ON STATE: ON STATUS

limit is back to nominal
2013-08-03 07:08:11.275 13524 1  CMDHveri crymca Information Log C: 53C09000, APID: 812, SSC: 13800

set stage: EV\_APP\_ACCEPT status to: PASSED

2013-08-22 23:32:20.754 23001 1 TFKT crymca Error Systen 4 Missing Source Packets, APID = 68, VCID = O,

S85C = 14894, Time = 2013-08-22T23:32:18.710216
2013-08-22 23:32:19.511 10307 1  NCDUadmi crymca Warning Log NCDU:TMOO7 Data gap on TM link VC 250/0,

Mode: Onl-TIM from KR14 . Reason: unk, Size: 15
2013-08-22 23:32:19.448 13842 1  CMDHmplx crymca Information Log Commanding link status set foo SN0 RF, TM: GREEN
2013-08-22 23:32:19.443 14778 1 TPKT crymca Error Systen Unexpected spill-over data

Anomaly models for single variables (anomaly = deviation from nominal behavior) that
return anomaly probabilities

Aggregation of anomlay probabilities returned by anomaly models for single variables to
detect system-level anomalies
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Anomaly models for single variables
Nominal mOdeIS Missing source packets

Numerical values T Cal
" Neural networks Zﬂ‘ | , [ | A
Average (ARMA) Il LP\ M | M ‘,. Uﬂ i J{ d UL

= Autoregressive Moving
k
Commanding link status TC

—

Categorical values
= Markov chains
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Anomaly models
D;: state — anomaly probability
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The aggregation problem

Given anomaly models for single variables {D4, D,,

Aggregation is a tree
= D; are the leaves
" Aggregation functions A; are other nodes

* The root returns the system’s anomaly probability

The best aggregation tree maximizes the identification
of anomalies at the system level
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Aggregation functions (1)

Maximum aggregation functions

4; (pl,pz, ---,pk,-) = max{py, P2, - Pk;}
= All aggregation trees are equivalent

Average aggregation functions
P1+p2+"'+pkj

4; (pl,pz, ---,pk,-) = K

= Equivalence classes of aggregation trees

P1 D2 D3  DPsa DPs  De
I TR TR
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Aggregation functions (2)

Cooperative negotiation aggregation functions
= |terative procedure to find agreements between children
" Proposals and counter-proposals [Amigoni and Gatti, JAAMAS, 2007]
= Equivalence classes of aggregation trees

4
\\p,t(DiGB

p=(0.65+0.79) /2=
0.72
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Solving algorithms (1)

Enumeration algorithm

Simulated annealing algorithm: local moves with decreasing probability of accepting a
move that worsens the aggregation tree

o swap D; and
initial tree D, move D; insert A; remove 4;

) ) (1)
GO Gom T & ()
S e @ @6 @ ."53\.

(2y) @) )
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Solving algorithms (2)

Greedy algorithm: local moves that strictly improves the aggregation tree

initial tree add D; insert A;

()
(49 n (2) @) (4
@) @) @) @ @ @ () (@) @)

= Does not cover the entire solution space
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Experimental evaluation

Implementation: each node of the aggregation tree is an independent software agent in

JADE
Anomaly models of 5 variables built from data of Cryosat-2 collected in February 2013

Anomaly at the system level with probability > 0.2
Cost matrix

System ok System anomalous

Classified ok 0 50

10 0

Classified anomalous

Test on data of Cryosat-2 collected in July and August 2013
Injection of anomalies at the system level
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Experiment
Single variable anomaly - System anomaly

[#]D1][D2[D3[Dyg[Ds]A/N]|
01]0.5 )
02(0.5 A Best solutions
03 0.3
04 0.4
05 0.7
06 0.5
07 0.3
08 0.8
00 0.0
10
11
12 0.8
13 0.4
14 0.4
15 0.3
16]0.4
17]0.8
18]0.5
i) 0.5
20 0.5

i

cost=0 cost =100

= e
1| =1

Aj: cooperative negotiation

g R R i e g
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Experiment
Correlated variables

Optimal solutions with cost =0 (4))
|#| Dy | Dy | D3 | Dy |D5 |A/N| @ @ Aj: cooperative negotiation
01 0.60 A
02 0.20 N
03(0.10|0.15|0.35 N
04(0.10|0.12[0.35 N @ @ @ @ @
05(0.10]0.10[0.35]0.70 A
06 0.20 N
07 0.50 A 150
08(0.10|0.09|0.25 N
09(0.20(0.17|0.35 N 125 ¢ 1
10[0.25(0.18[0.35 A
11 0.20 N 100 |
2 0.40 A o A Blue: enumeration
13 0.10/0.50 A S 57 | P Red: simulated annealing
14[0.10[0.10(0.25[0.60 A ] Black: greedy
15[/0.10[0.08[0.25 N 50 | P
16]0.05]0.07[0.20 N :
163010 5810 45 A e | o 1 P
18[0.35(0.30(0.55 A |
19[0.25(0.10(0.35 A 0 i
20[0.10[0.12[0.25 N 0 100 200 300

Number of solutions
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Experiment
Subsets of correlated variables

Optimal solutions produce 2 false positives (cost = 20)

[#[ D1 [Da [ D3 [ D4 [ D5 [A/N]
01]0.15]0.20]0.25
02(0.10(0.15]0.20
03(0.25(0.28]0.32
04]0.30(0.32]0.35
05]0.25(0.55]0.40
06(0.35(0.40[0.50
07(0.45(0.55]0.60
08[0.10]0.00]0.25
0910.20(0.17[0.35
10(0.25(0.18(0.35
11 0.30[0.20
13 0.40(0.30
13 0.50(0.40
i1 0.60(0.45
15 0.65(0.55
16 0.70]0.40
17 0.80]0.70
18(0.05(0.10(0.15|0.20(0.30
10]0.15(0.20(0.25|0.30]0.40
30(0.20(0.25(0.30|0.40]0.50

A4: cooperative negotiation

180

125 1

Blue: enumeration
Red: simulated annealing 50
Black: greedy

0 100 200 300
MNumber of solutions

Z| 2| 2| PP w 2| 2 2 2| 2 2P e e | 2 22
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Experiment
Scalability

Enumeration algorithm

/ Number of anomaly models for single variables

T B 8 7 B o 10 11 12
trees|3 - 102 |6 - 102 |1 . 105 |4 . 10%|2 . 10®%[8 . 109|4a . 1011|353 . 1013
time| Os 0 s 0s 15 = 9 m & h 19 d* | 3.7 v*

* estimated

Simulated annealing and greedy algorithms are tunable by the user (e.g., number of
iterations)
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Guidelines for applications

System anomalies related to single variables
- Use maximum aggregation functions
System anomalies related to correlated variables
- Use cooperative negotiation aggregation functions
System anomalies related to subsets of correlated variables
- Use combinations of aggregation functions

Simulated annealing is the most effective algorithm for building aggregation trees
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Conclusions

Aggregating partial models using mechanisms for intelligent agents’ interaction
could provide a solution for anomaly detection in complex systems

The approach is similar to some ensemble approaches, but it provides more structure
and better understanding of the systems (good for diagnosis)
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Thank you!
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